Elucidation of the Structure-Activity Relationships of Apelin: Influence of Unnatural Amino Acids on Binding, Signaling and Plasma Stability

Alexandre Murza1,2, Alexandre Parent2, Elie Besserer-Offroy1,2, Nicolas Beaudet2, Philippe Sarret2, Eric Marsault1

1Department of Pharmacology, 2Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada

Introduction

Apelin is the endogenous ligand of APJ receptor, a member of the G protein-coupled receptor superfamily. There is currently little information on the structure/activity relationship (SAR) of apelin (Scheme 1). In an effort to better delineate SAR, we synthesized analogs of apelin-13 modified at selected positions with unnatural amino acids, with a particular emphasis on the C-terminal portion and Pro12. Analogs were then tested in binding and functional assays by evaluating G\textsubscript{i/o} mediated reduction in cAMP levels and by assessing β-arrestin2 recruitment to the receptor. The plasma stability of new analogs was also assessed. Several were found to possess increased binding, biased β-arrestin2 signaling and higher stability compared to the parent peptide.

Scheme 1
\begin{align*}
\text{\texttt{<Glu}}^{1}\text{-R}^{2}\text{-P}^{3}\text{-L}^{5}\text{-S}^{6}\text{-H}^{7}\text{-K}^{8}\text{-G}^{9}\text{-P}^{10}\text{-M}^{11}\text{-P}^{12}\text{-F}^{13} & \\
\text{Important for binding [1]} & \text{Important for binding and APJ internalization [1]} \\
\text{ACE-2 cleavage, Half-life in vitro < 1min [2]} & \\
\end{align*}

Results and Discussion

The C-terminal Phe13 of apelin-13 was replaced by unnatural amino acids (R1, Table 1). This set of modifications was performed on the Met11Nle analog which possesses a similar profile in terms of affinity, coupling to second messenger cascades, and stability to that of apelin-13 (IC\textsubscript{50} 5.7 nM ; EC\textsubscript{50} cAMP 1.9 nM ; EC\textsubscript{50} β-arr2 91 nM). Analogs Phe13Dip and Phe13Bip displayed a 10-fold difference in affinity suggesting that the C-terminal binding site is deep rather than wide. Interestingly, Phe13Cha exhibited an affinity comparable to that of apelin-13, indicating that hydrophobic interactions are necessary for binding, but aromatic, π -stacking type interactions are not essential. Phe13-1Nal and Phe13-2Nal showed an interesting trend in the β-arrestin2 pathway. Replacement of Pro12 by Aib provided a very potent analog, and Pro12Aminoindane exhibited a biased signaling in β-arrestin2 pathway (R2, Table 1). Finally, C-terminally modified analogs showed significant improvements in plasma stability over apelin-13, whereas modification of Pro12 displayed more variable results (Scheme 2).
Table 1

<table>
<thead>
<tr>
<th></th>
<th>Dip</th>
<th>Bip</th>
<th>1Nal</th>
<th>2Nal</th>
<th>Cha</th>
<th>(2,4,5-trifluoro)F</th>
<th>Aib</th>
<th>Aminoidane</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC_{50} (nM)</td>
<td>88 ± 6</td>
<td>7.8 ± 0.4</td>
<td>14 ± 0.9</td>
<td>1.2 ± 0.1</td>
<td>2.3 ± 0.6</td>
<td>0.8 ± 0.2</td>
<td>0.7 ± 0.1</td>
<td>20 ± 1</td>
</tr>
<tr>
<td>EC_{50} cAMP (nM)</td>
<td>ND</td>
<td>10 ± 3</td>
<td>28 ± 2</td>
<td>20 ± 6</td>
<td>20 ± 8</td>
<td>20 ± 9</td>
<td>30 ± 13</td>
<td>13 ± 4</td>
</tr>
<tr>
<td>EC_{50} β-arr2 (nM)</td>
<td>630 ± 179</td>
<td>361 ± 64</td>
<td>522 ± 110</td>
<td>70 ± 11</td>
<td>170 ± 32</td>
<td>32 ± 9</td>
<td>46 ± 10</td>
<td>1204 ± 208</td>
</tr>
</tbody>
</table>

Scheme 2

% of peptide remaining after 1h, 2h and 3h of incubation in rat plasma

Acknowledgments

Financial support from the Université de Sherbrooke, the Institut de Pharmacologie de Sherbrooke (IPS) and the Centre des Neurosciences de Sherbrooke (CNS).

References
